

WORKSHOP: Parallel Computing With MATLAB (Part II)

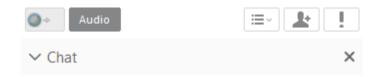
Damian Pietrus Application Engineer, MathWorks April 8, 2022

Agenda

- Part I Parallel Computing with MATLAB on the Desktop
 - Parallel Computing Toolbox
 - MATLAB Online
- Part II Scaling MATLAB to Teton
 - MATLAB Parallel Server
 - Open OnDemand

Teton Documentation: <u>https://arccwiki.atlassian.net/wiki/spaces/DOCUMENTAT/pages/1553301507/Teton</u>

Agenda


- Part I Parallel Computing with MATLAB on the Desktop
 - Parallel Computing Toolbox
 - MATLAB Online
- Part II Scaling MATLAB to Teton
 - MATLAB Parallel Server
 - Open OnDemand

Teton Documentation: <u>https://arccwiki.atlassian.net/wiki/spaces/DOCUMENTAT/pages/1553301507/Teton</u>

Chatting

- Send to at least the Host, Presenter & Panelists
- Ideally, send to All Attendees

Send to:	Host, Presenter & Panelists $\qquad \lor$	
	Host Presenter Host & Presenter	Send
✓ Polling	Host, Presenter & Panelists All Participants	×
Poll 1	All Panelists	
lb 🖿	All Attendees	×

Participants

Scaling MATLAB to Teton

- Accessing and running MATLAB on local HPC clusters
- Running single- and multi-node MATLAB jobs

MathWorks[®]

A note about today's workshop...

The workflow and examples are about process, not performance

Accessing and running MATLAB on local HPC clusters (1)

- Two options
 - ssh
 - Might be useful for either low-bandwidth or automation
 - Open OnDemand
 - Graphical interface
 - Also supports xterm and copying files

Accessing and running MATLAB on local HPC clusters (2)

- Open OnDemand
 - Web-based, no client software needs to be installed on your local machine (beside a modern browser)
- Access
 - <u>https://southpass.arcc.uwyo.edu/</u>
 - Use login ID and Password
- Local resources for OOD
 - Overview:

https://arccwiki.atlassian.net/wiki/spaces/DOCUMENTAT/pages/1298071553/Southpass

Log into OOD: https://southpass.arcc.uwyo.edu/

Wyo Login	ALL COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	Enter Your User Name and Password
	Username
	Password
	I want to change my password
	<u>I forgot my password</u>
	Get help with logon problems Logon
	For security reasons, please Log Out and Exit your web browser when you are done accessing services that require authentication.
	For several UW applications, only Internet Explorer 11, Firefox, or Chrome are supported browsers that provide full application functionality. Windows 10 users who are using applications requiring Internet Explorer please follow these instructions

😢 Help 🝷 💄 Logged in as dpietrus 🛛 🕩 Log Out

OnDemand provides an integrated, single access point for all of your HPC resources.

Pinned Apps A featured subset of all available apps

Job Composer

System Installed App

supjee.

System Installed App

Home Directory

System Installed App

Teton Shell Access

System Installed App

System Installed App

Teton System Status

pp System Installed App

Message of the Day

Welcome to the University of Wyoming Teton compute cluster hosted by the Advanced Research Computing Center (ARCC). This system is for authorized users only.

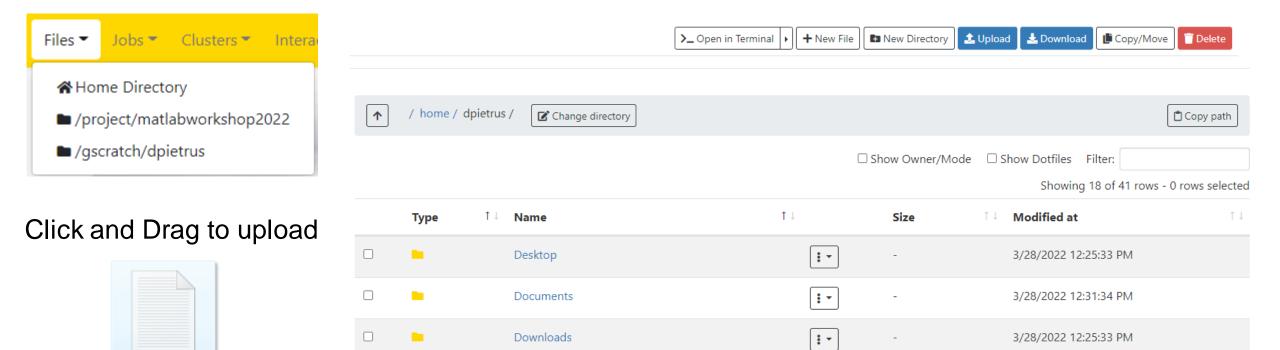
- Accounts are for single users only. Do NOT share your account with others.

- Users do not have "sudo" privileges and never will.

- Please avoid building and installing your own MPI as you will miss key

features of the job scheduler and interconnect for the cluster

OOD: Getting started


- File system
- Desktop App + MATLAB
- Command prompt

OOD: File system

+ Copy

Music

-

3/28/2022 12:25:33 PM

%

0.00

0.00

0.00

0.00

Download workshop files (1)

		*****	******	******	******	*******	*******	**
Clusters 🕶	Interactive App	Check out the ARCC wiki for he	Lp and inf	ormation				
>_Teton S	Shell Access	https://arccwiki.atlassian.ne	et/wiki/sp	aces/DOCU	MENTAT/o	verview		
🙆 Teton S	System Status	******	*****	*******	******	*******	********	**
		Modules:						
		module spider - This command	will show	all pack	ages cur	rently inst	alled	
		******	*****	*****	******	*******	*******	**
		Maintenance Scheduled: Jan 5†	th, 2022 f	rom 8am t	o 8pm			
		arccquota tool	 	Block	 	F	ile	
		Path	Used	Limit	۔۔۔۔ %	Used	Limit	
		/home/dpietrus	0.18g		-	1.0K	0.0	0
		<pre>/gscratch/dpietrus +</pre>	0.00k	5.00t	0.00	1.0	0.0	0
		/project/matlabworkshop2022						0
		`- dpietrus +	0.00k	0.00k	0.00	2.0	0.0	0
		Resetting modules to system def	fault					
		[dpietrus@tlog1 ~]\$						

Download workshop files (2)

```
[dpietrus@tlog1 ~]$
[dpietrus@tlog1 ~]$ # Make a local copy of the Workshop files (Part II)
[dpietrus@tlog1 ~]$ mkdir -p ~/Documents/MATLAB
[dpietrus@tlog1 ~]$ cp -frp /project/matlabworkshop2022/matlab-workshop-files/ ~/Documents/MATLAB/
[dpietrus@tlog1 ~]$
[dpietrus@tlog1 ~]$ ls -l ~/Documents/MATLAB/matlab-workshop-files/
total 6
-rw-r--r-- 1 dpietrus dpietrus 685 Mar 28 14:41 calc fft cpu gpu.m
-rw-r--r-- 1 dpietrus dpietrus 662 Mar 28 14:41 calc mandelbrot.m
-rw-r--r-- 1 dpietrus dpietrus 849 Mar 28 14:41 calc pi.m
-rw-r--r-- 1 dpietrus dpietrus 861 Mar 28 14:41 calc pi multi node.m
-rw-r--r-- 1 dpietrus dpietrus 226 Mar 28 14:41 mandelbrot example.m
-rw-r--r-- 1 dpietrus dpietrus 522 Mar 28 14:41 matlab-gpu.slurm
-rw-r--r-- 1 dpietrus dpietrus 402 Mar 28 14:41 matlab-multi-node.slurm
-rw-r--r-- 1 dpietrus dpietrus 447 Mar 28 14:41 matlab-single-node.slurm
-rw-r--r-- 1 dpietrus dpietrus 418 Mar 28 14:41 matlab-sle.slurm
-rw-r--r-- 1 dpietrus dpietrus 429 Mar 28 14:41 solve sys linear eqns.m
-rw-r--r-- 1 dpietrus dpietrus 194 Mar 28 14:41 test fcn.m
[dpietrus@tlog1 ~]$
```


Ways to run MATLAB

- Interactively
 - with a parallel pool (parpool)
 - with batch jobs (batch)
- Noninteractive
 - in a SLURM job script (sbatch)

MATLAB job submitters

- parpool
 - Single session
 - Synchronous execution
 - Seamlessly runs parfor, parfeval, and spmd

- batch
 - Multiple submissions
 - Non-blocking
 - Calls top-level function or script
 - Requires API to extract results

Interactively: with a parallel pool parpool

OOD: MATLAB via Desktop App (1)

Interactive Apps Desktops Teton Mate Desktop

Teton Xfce Desktop

Servers

🝯 Jupyter

Teton Mate Desktop

This app will launch an interactive desktop on one or more compute nodes. You will have full access to the resources these nodes provide. This is analogous to an interactive batch job.

Project/Account

matlabworkshop2022

Specify the name of your project

Number of hours

4

The maximum number of hours your desktop session will run

Desktop Configuration

2 CPU, 8GB memory

~

Select the CPU and memory configuration for the desktop

 \Box I would like to receive an email when the session starts

Launch

* The Teton Mate Desktop session data for this session can be accessed under the data root directory.

OOD: MATLAB via Desktop App (2)

Teton Mate Desktop (2338120)	Queue	d
Created at: 2022-03-28 16:38:26 MDT Time Requested: 4 hours Session ID: ebc74d63-488a-4988-b9ac-07cccbbbddd1	Delete	
Please be patient as your job currently sits in queue. The wait time requested.		
	Teton Mate Desktop (2338120)	
	Host: ttest01 Created at: 2022-03-28 16:38:26 MDT Time Remaining: 3 hours and 59 minutes Session ID: ebc74d63-488a-4988-b9ac-07cccbbbddd1	
	Compression	Im
	0 (low) to 9 (high)	0 (

Launch Teton Mate Desktop

View Only (Share-able Link)

前 Delete

1 node | 2 cores | Running

OOD: MATLAB App (3)

• Mate Ter	minal	\odot \otimes \otimes
File Edit View Search Terminal Help		
<pre>[dpietrus@ttest01 ~]\$ module [dpietrus@ttest01 ~]\$ matlab</pre>	load matlab	^
MATLAB is selecting SOFTWARE	OPENGL rendering.	
		Υ.

Parallel MATLAB – Single Node

	Add-C	Jns ⊢	elp T	🖳 Le
ł	Select a Default Cluster)	~	local
1	Discover Clusters			
	Create and Manage Clu	isters		
	Monitor Jobs			
	Parallel Preferences			

>>	maxNumCompThreads
----	-------------------

ans =

Teton Mate Desktop

This app will launch an interactive desktop on one or more compute nodes. You will have full access to the resources these nodes provide. This is analogous to an interactive batch job.

Project/Account

matlabworkshop2022

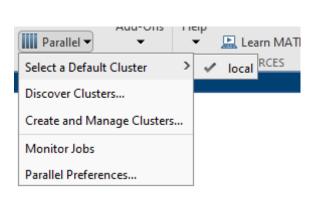
Specify the name of your project

Number of hours

The maximum number of hours your desktop session will run

Desktop Configuration

2 CPU, 8GB memory


Select the CPU and memory configuration for the desktop

```
>> p = parpool('local',2);
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 2).
>>
>> tic, parfor idx = 1:40, pause(3), end, toc
Elapsed time is 60.272708 seconds.
>>
```


local profile

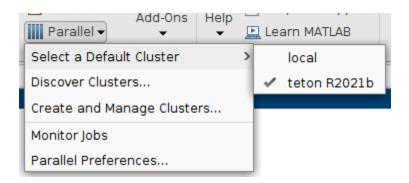
"How does MATLAB know about Teton?"

Configure MATLAB to create Teton profile

```
>> % Create a new profile for Teton
>> configCluster
```

Must set AccountName and WallTime before submitting jobs to TETON. E.g.

```
>> c = parcluster;
>> c.AdditionalProperties.AccountName = 'account-name';
>> c.AdditionalProperties.WallTime = '5:00:00';
>> c.saveProfile
```


>>

Note the message – we will address this in a few slides

New Teton profile

Only call configCluster once

 \sim

Job submission flags

>> c = parcluster;
>> c.AdditionalProperties

ans =

AdditionalProperties with properties:

- AccountName: ''
- AdditionalSubmitArgs: ''
 - EmailAddress: ''
 - EnableDebug: 0
 - GpuCard: ''
 - GpusPerNode: 0
 - MemUsage: '
 - Nodes: 0
 - ProcsPerNode: 0
 - QueueName: ''
 - Reservation: ''
 - UseSmpd: 0
 - WallTime: ''

Teton Mate Desktop

This app will launch an interactive desktop on one or more compute nodes. You will have full access to the resources these nodes provide. This is analogous to an interactive batch job.

Project/Account

matlabworkshop2022

Specify the name of your project

Number of hours

4

The maximum number of hours your desktop session will run

Desktop Configuration

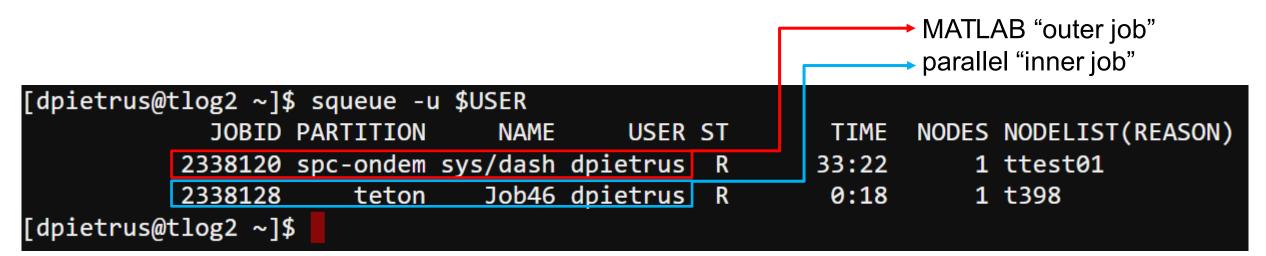
2 CPU, 8GB memory

Select the CPU and memory configuration for the desktop

 $\hfill\square$ I would like to receive an email when the session starts

Launch

* The Teton Mate Desktop session data for this session can be accessed under the data root directory.


Job submission flags

- >> % Required fields
- >> c.AdditionalProperties.AccountName = 'matlabworkshop2022';
- >> c.AdditionalProperties.WallTime = '1:00:00';
- >>
- >> % Required for this workshop only
- >> c.AdditionalProperties.Reservation = 'MATLAB_WS';
- >>
- >> % Saves changes to profile for future use
- >> c.saveProfile
- >>

Parallel MATLAB – Multi-node (1)

- In order to run a multi-node MATLAB job, MATLAB will generate and submit a new SLURM job
 - Executed during any "job launcher"
 - parpool, batch, createJob
 - Run asynchronously while MATLAB session is running, except pool
 - True regardless if we're running MATLAB via OOD or a SLURM job script


```
Parallel MATLAB – Multi-node (2)
                                                >> p = parpool('local',2);
                                                Starting parallel pool (parpool) using the 'local' profile ...
                                                Connected to the parallel pool (number of workers (2))
                                                >>
                                                >> tic, parfor idx = 1:40, pause(3), end, toc
                                                Elapsed time is 60.272708 seconds.
                                                >>
>> % Start multi-node parallel pool
>> p = c.parpool(40);
Starting parallel pool (parpool) using the 'teton R2021b' profile ...
additionalSubmitArgs =
    '--ntasks=40 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022 -t 1:00:00'
Connected to the parallel pool (number of workers: (40)
>> tic, parfor idx = 1:800, pause(3), end, toc
Elapsed time is 60.379086 seconds.
                                                                  "20x more workers,
>>
                                                                  but the same time?"
```



```
How big of a Pool? . . .
```

```
>> % Pool of 200 workers
>> tic, p = c.parpool(200); toc
Starting parallel pool (parpool) using the 'teton R2021b' profile ...
```

```
additionalSubmitArgs =
```

```
'--ntasks=200 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022 -t 1:00:00'
```

```
Connected to the parallel pool (number of workers: 200).
Elapsed time is 47.164235 seconds.
>>
>> tic, parfor idx = 1:4000, pause(3), end, toc
Elapsed time is 60.507177 seconds.
>> % Equivalent hours if run serially
>> 4000 * 3 / 60 / 60
```

ans =

3.3333

Change directories to workshop

>> cd(fullfile(userpath,'matlab-workshop-files'))

Exercise: Calculate π

$$\int_{0}^{1} \frac{4}{1+x^{2}} dx = 4(atan(1) - atan(0)) = \pi$$

$$F(x) = \frac{4}{1+x^2}$$

Calculate π

function calc_pi

c = parcluster('local');

```
% Query for available cores (assume either Slurm or PBS)
sz = str2num([getenv('SLURM_CPUS_PER_TASK') getenv('PBS_NP')]); %#ok<ST2NM>
if isempty(sz), sz = maxNumCompThreads; end
```

```
if isempty(gcp('nocreate')), c.parpool(sz); end
```

spmd

```
a = (labindex - 1)/numlabs;
b = labindex/numlabs;
fprintf('Subinterval: [%-4g, %-4g]\n', a, b)
```

```
myIntegral = integral(@quadpi, a, b);
fprintf('Subinterval: [%-4g, %-4g] Integral: %4g\n', a, b, myIntegral)
```

```
piApprox = gplus(myIntegral);
end
```

```
approx1 = piApprox{1}; % 1st element holds value on worker 1
fprintf('pi : %.18f\n', pi)
fprintf('Approximation: %.18f\n', approx1)
fprintf('Error : %g\n', abs(pi - approx1))
```

function y = quadpi(x)
%QUADPI Return data to approximate pi.

% Derivative of 4*atan(x)
y = 4./(1 + x.^2);

function calc_pi_multi_node

c = parcluster; % Required properties c.AdditionalProperties.WallTime = '1:00:00'; c.AdditionalProperties.AccountName = 'matlabworkshop2022'; % Required for this workshop only c.AdditionalProperties.Reservation = 'MATLAB_WS'; % Optional properties c.AdditionalProperties.MemUsage = '5G';

if isempty(gcp('nocreate')), c.parpool(20); end

```
spmd
```

a = (labindex - 1)/numlabs; b = labindex/numlabs; fprintf('Subinterval: [%-4g, %-4g]\n', a, b)

myIntegral = integral(@quadpi, a, b);
fprintf('Subinterval: [%-4g, %-4g] Integral: %4g\n', a, b, myIntegral)

piApprox = gplus(myIntegral);
end

```
approx1 = piApprox{1}; % 1st element holds value on worker 1
fprintf('pi : %.18f\n', pi)
fprintf('Approximation: %.18f\n', approx1)
fprintf('Error : %g\n', abs(pi - approx1))
```

```
function y = quadpi(x)
%QUADPI Return data to approximate pi.
```

```
% Derivative of 4*atan(x)
y = 4./(1 + x.^2);
```


Results

>> calc_pi_multi_node
Starting parallel pool (parpool) using the 'teton R2021b' profile ...

```
additionalSubmitArgs =
```

'--ntasks=20 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworks

Connected to the parallel pool (number of workers: 20). Worker 1: Subinterval: [0 , 0.025] Worker 2: Subinterval: [0.025, 0.05] Worker 3: Subinterval: [0.05, 0.075]

. . .

```
Worker 18:
   Subinterval: [0.425, 0.45] Integral: 0.0839331
Worker 20:
   Subinterval: [0.525, 0.55] Integral: 0.0775848
pi : 3.141592653589793116
Approximation: 3.141592653589793116
Error : 0
```

>> calc pi Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 2). Worker 1: Subinterval: [0 , 0.5] Worker 2: Subinterval: [0.5, 1] Worker 1: Subinterval: [0 , 0.5] Integral: 1.85459 Worker 2: Subinterval: [0.5, 1] Integral: 1.287 : 3.141592653589793116 pi Approximation: 3.141592653589793116 Error : 0

GPUs

GPU Availability

Partition	GPU Туре	Device ID	Nodes	CUDA Cores	GPU Memory Size (GB)	Compute Capability
moran	GeForce GTX Titan	[1-2]	mdbg01	2688	6	3.5
moran	GeForce GTX Titan X	0 [2-3]	mdbg01 mdbg02	3072	12	5.2
moran	Tesla K20m	[0-1] 1	m[025-32], m[075-82], m086, m268	2496	4.7	3.5
moran	Tesla K20Xm	[0-1] 0	m219/20/27/28, m235/36, m243/4, m251/2/9, m260/7, m268	2688	5.7	3.5
moran	Tesla K40c	[0-1]	mdbg02	2880	11.4	3.5
moran-bigmem-gpu	Tesla K80	[0-7]	mbm[01-02]	2496	11.4	3.7
teton-gpu	Tesla P100	[0-1]	tbm[03-10]	3584	16	6.0

The following two GPU nodes are reserved for AI use. These are special nodes running Ubuntu and CUDA 11.0.

Partition	GPU	Devices	Nodes	CUDA Cores	Tensor Cores	GPU Memory Size (GB)	Compute Capability
dgx	Tesla V100	[0-7]	mdgx01	5120	640	16	7.0
dgx	Tesla V100	[0-7]	tdgx01	5120	640	32	7.0

Start pool with GPU node

```
>> % Start a parallel pool with a GPU
>> c = parcluster;
>> c.AdditionalProperties.GpusPerNode = 1;
>> c.AdditionalProperties.AccountName = 'matlabworkshop2022';
>> c.AdditionalProperties.Reservation = '';
>>
>> p = c.parpool(1);
Starting parallel pool (parpool) using the 'teton R2021b' profile ...
additionalSubmitArgs =
    '--ntasks=1 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022 -t 1:00:00
Connected to the parallel pool (number of workers: 1).
```

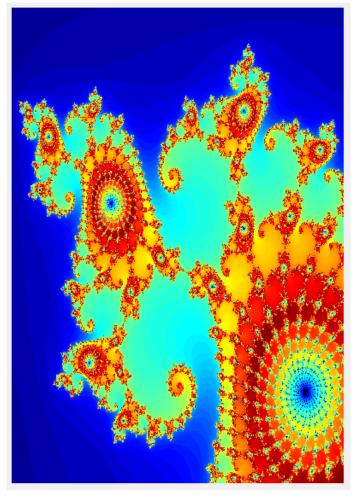
>>

Tesla K80 – Card we were assigned

>> spmd, gpuDevice, end
Worker 1:
 Warning: Support for GPU devices with Compute Capability 3.7 will be removed in a future MATLAB release.
 CUDADevice with properties:

Name: 'Tesla K80' Index: 1 ComputeCapability: '3.7' SupportsDouble: 1 DriverVersion: 11.2000 ToolkitVersion: 11 MaxThreadsPerBlock: 1024 MaxShmemPerBlock: 49152 MaxThreadBlockSize: [1024 1024 64] MaxGridSize: [2.1475e+09 65535 65535] SIMDWidth: 32 TotalMemory: 1.1997e+10 AvailableMemory: 1.1852e+10 MultiprocessorCount: 13 ClockRateKHz: 823500 ComputeMode: 'Default' GPUOverlapsTransfers: 1 KernelExecutionTimeout: 0 CanMapHostMemory: 1 DeviceSupported: 1 DeviceAvailable: 1 DeviceSelected: 1

Note


GPU computing requirements:

MATLAB[®] supports NVIDIA[®] GPU architectures with compute capability 3.5 to 8.x.

Example: mandelbrot (1)

```
function [x,y,count,t] = calc_mandelbrot(type)
maxIterations = 1000;
gridSize = 4000;
xlim = [-0.748766713922161, -0.748766707771757];
ylim = [ 0.123640844894862, 0.123640851045266];
t0 = tic;
if strcmp(type,'gpuArray')
    x = gpuArray.linspace(xlim(1),xlim(2),gridSize);
    y = gpuArray.linspace(ylim(1),ylim(2),gridSize);
else
    x = linspace(xlim(1), xlim(2), gridSize);
    y = linspace(ylim(1),ylim(2),gridSize);
end
[xGrid,yGrid] = meshgrid(x,y);
z0 = complex(xGrid,yGrid);
count = ones(size(z0),type);
z = z0;
for n = 0:maxIterations
    z = z.*z + z0;
    inside = abs(z) \ll 2;
    count = count + inside;
end
count = log(count);
t = toc(t0);
```


Example: mandelbrot (2)

function mandelbrot_example

```
% Run on CPU
[~, ~, ~, cpu_t] = calc_mandelbrot('double');
% Run on GPU
[~, ~, ~, gpu_t] = calc_mandelbrot('gpuArray');
fprintf('CPU time: %0.2f\n',cpu_t)
fprintf('GPU time: %0.2f\n',gpu_t)
>> spmd, mandelbrot_example, end
Lab 1:
CPU time: 467.88
GPU time: 3.32
>>
```

end

Example: FFT (1)

function [time_cpu, time_gpu] = calc_fft_cpu_gpu(N)

matrix_cpu = rand(N);

```
tic
out_cpu = fft(matrix_cpu);
time_cpu = toc;
disp(['Total time on CPU: ' num2str(time_cpu)])
```

t0 = tic; % Transfer matrix to GPU device matrix_gpu = gpuArray(matrix_cpu);

```
t1 = tic;
out_gpu = fft(matrix_gpu);
time_gfft = toc(t1);
```

```
% Gather back from GPU to CPU
gather_gpu = gather(out_gpu);
```

```
% Wait for transfer to complete
wait(gpuDevice)
time_gpu = toc(t0);
```

```
disp(['GPU FFT: ' num2str(time_gfft)])
disp(['Total time on GPU: ' num2str(time_gpu)])
```

```
disp(['FFT speed improvement: ' num2str(time_cpu/time_gfft)])
disp(['Total speed improvement: ' num2str(time_cpu/time_gpu)])
```

```
whos matrix_cpu matrix_gpu
```


Example: FFT (2)

```
>> % 0.5 GB Array
>> sz = 2^13 * 2^13 * 8 / 1024^3
SZ =
    0.5000
>>
>> % GPU memory (GB)
>> spmd, d = gpuDevice; d.AvailableMemory/1024^3, end
Worker 1:
  ans =
      5.4119
```


Example: FFT (3)

```
>> spmd, [cpu t, gpu t] = calc fft cpu gpu(2^13); end
                                                                                        Why did the GPU
Worker 1:
                                                                                        code run faster
  Total time on CPU: 1.0573
                                                                                         the 2<sup>nd</sup> time?
  GPU FFT: 0.14827
  Total time on GPU: 3.4917
                                                                                          ଚ
 FFT speed improvement: 7.1309
  Total speed improvement: 0.30281
    Name
                       Size
                                             Bytes Class
                                                                Attributes
                                         536870912 double
                8192x8192
    matrix cpu
                    8192x8192
    matrix gpu
                                         536870912
                                                    gpuArray
>>
>> % Why will the GPU run faster the second time?
>> spmd, [cpu t, gpu t] = calc fft cpu gpu(2^13); end
Worker 1:
  Total time on CPU: 0.87341
 GPU FFT: 0.004067
  Total time on GPU: 1.0257
 FFT speed improvement: 214.7558
  Total speed improvement: 0.8515
                       Size
                                             Bytes Class
                                                                Attributes
    Name
    matrix cpu
                    8192x8192
                                         536870912 double
                    8192x8192
                                         536870912
    matrix gpu
                                                    gpuArray
```


Turnoff GPU requests when you don't need them anymore

>> c.AdditionalProperties.GpusPerNode = 0;
>> c.AdditionalProperties.Reservation = 'MATLAB_WS';

Interactively: with batch jobs batch

Exercise: "Hello, World!"

```
>> % Submit job to find out where MATLAB is running
>> c = parcluster;
>> j = c.batch(@pwd,1,{});
```

```
additionalSubmitArgs =
```

```
'--ntasks=1 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022 -t 1:00:00
```

```
>> % Check the state of the job
>> j.State
```

ans =

'finished'

```
>> % Fetch the results
>> j.fetchOutputs{:}
```

```
ans =
```

'/pfs/tc1/home/dpietrus/Documents/MATLAB/matlab-workshop-files'

Set the batch CurrentFolder argument to change default location

Exercise: Calculate π

```
>> % Submit calc_pi job
>> c = parcluster;
>>
>> % Request 19 workers
>> j = c.batch(@calc_pi,0,{},'Pool',19);
```

additionalSubmitArgs =

>>

'--ntasks=20 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022

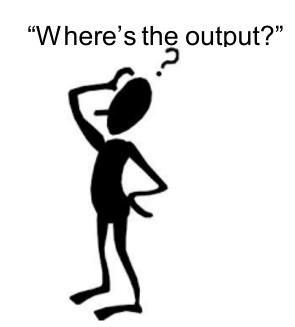
"If my Pool is size 19, why am I requesting 20 cores?"

Fetch the results

```
>> % Request 19 workers
>> j = c.batch(@calc_pi,0,{},'Pool',19);
```

```
additionalSubmitArgs =
```

```
'--ntasks=20 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022
```


```
>> % Check the state of the job
>> j.State
```

ans =

'finished'

>> % Fetch the results
>> j.fetchOutputs{:}

>>

Fetch the diary

>> j.diary --- Start Diary ---Worker 1: Subinterval: [0 , 0.0526316] Worker 2: Subinterval: [0.0526316, 0.105263] Worker 3: Subinterval: [0.105263, 0.157895] Worker 4: Subinterval: [0.157895, 0.210526] Worker 5: Subinterval: [0.210526, 0.263158] Worker 6: Subinterval: [0.263158, 0.315789] Worker 7: Subinterval: [0.315789, 0.368421] Worker 8: Subinterval: [0.368421, 0.421053]

Worker 14: Subinterval: [0.684211, 0.736842] Integral: 0.139906 Worker 15: Subinterval: [0.736842, 0.789474] Integral: 0.133051 Worker 16: Subinterval: [0.789474, 0.842105] Integral: 0.126414 Worker 17: Subinterval: [0.842105, 0.894737] Integral: 0.120027 Worker 18: Subinterval: [0.894737, 0.947368] Integral: 0.113912 Worker 19: Subinterval: [0.947368, 1] Integral: 0.108082 pi : 3.141592653589793116 Approximation: 3.141592653589793560 : 4.44089e-16 Error --- End Diary ---

>>

What gets "returned"?

- Function output
- Diary
- Saved files

Example

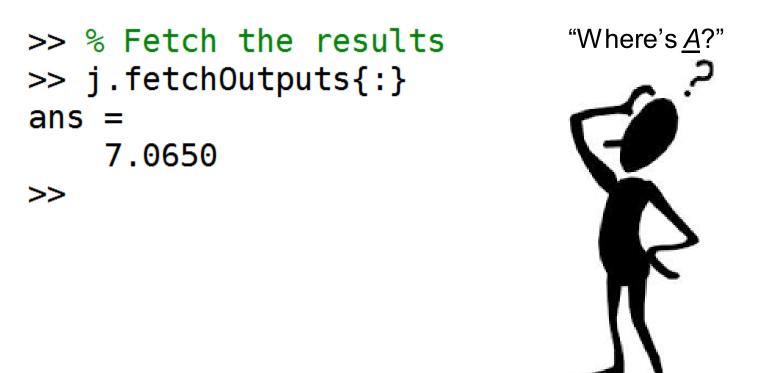
```
function [t, A] = test_fcn(sims)
                disp('Start sim')
"What size Pool am
   I running?
                A = nan(sims, 1);
                t0 = tic;
                parfor idx = 1:sims
                    A(idx) = idx;
                    pause(0.5)
                    idx
                end
                t = toc(t0);
                disp('Finished')
                save RESULTS A
```


Job submission

```
>> j = c.batch(@test_fcn,1,{100},'Pool',10);
```

```
additionalSubmitArgs =
```

```
'--ntasks=11 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022
```


>>

Fetch the results

function [t, A] = test_fcn(sims)

c.batch(@test_fcn(1){100},

Fetch the diary

<pre>% View the diary j.diary Start Diary Start sim</pre>
ans =
2
ans =
4
ans =
100
ans =
98
Finished
End Diary

```
function [t, A] = test fcn(sims)
disp('Start sim')
A = nan(sims,1);
t0 = tic;
parfor idx = 1:sims
    A(idx) = idx;
    pause(0.5)
    idx
end
t = toc(t0);
disp('Finished')
save RESULTS A
```


Save files

```
function [t, A] = test_fcn(sims)
                 disp('Start sim')
"Where does RESULTS
   get written to?" A = nan(sims,1);
                 t0 = tic;
                 parfor idx = 1:sims
                     A(idx) = idx;
                     pause(0.5)
                      idx
                 end
                 t = toc(t0);
                 disp('Finished')
                 save RESULTS A
```


Submitting scripts, instead of functions

```
additionalSubmitArgs =
```

```
'--ntasks=1 --cpus-per-task=1 --ntasks-per-core=1
```


Loading variables to local workspace

```
>> z = 10;
>> 
% Submit a script (instead of a function)
>> j = c.batch('x = 3; y = 4, z');
```

additionalSubmitArgs =

'--ntasks=1 --cpus-per-task=1 --ntasks-per-core=1

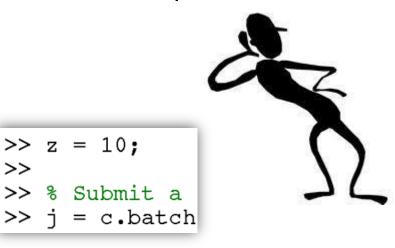
"If we cleared z, then why >> clear z does who display it? >> who

Your variables are:

```
c j
```

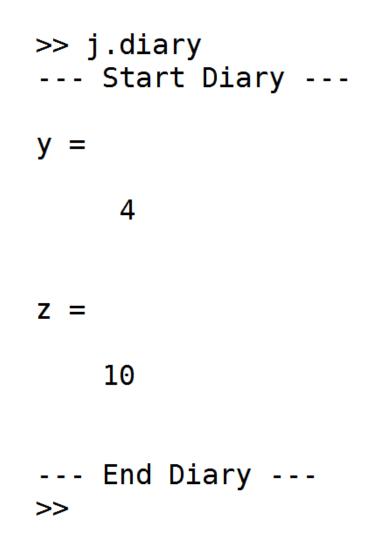
>> % Check the state of the job
>> j.State

ans =


'finished'

>> % Load variables from the job
>> j.load
>> who

Your variables are:


ansc j x y z

"I'll pass all of the variables in my local workspace to all of the workers. Then I'll receive everything the workers generate and load it back to my local workspace."

Getting the diary of scripts

When has my job run and finished?

```
additionalSubmitArgs =
```

```
'--ntasks=11 --cpus-per-task=1 --ntasks-per-core=1 --mail-user=user-id@uwyo.edu
```

```
>>
```

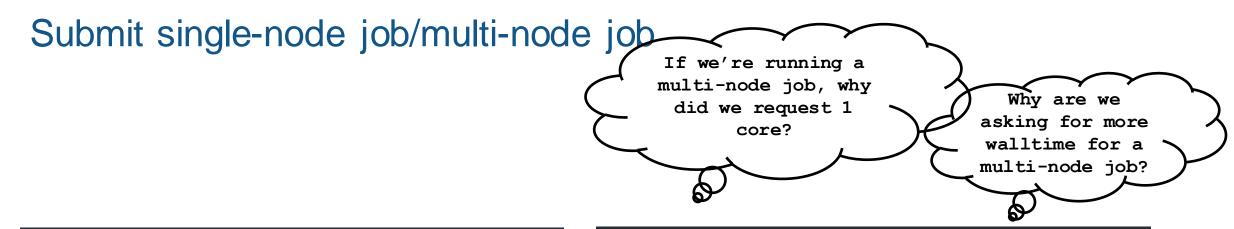

Retrieving past jobs

 Preferences Set Path Parallel 	Add-Ons	? Hel	🖉 🗟 Request Supr
Select a Default	Cluster	>	RESOURCES
Discover Cluster	rs		
Create and Man	age Clusters		
Monitor Jobs			
Parallel Preferen	ices		

Job Monitor

ID	Username	Submit Time	Finish Time	Tasks	State	e	Description
	dpietrus	Tue Mar 29 15:15:25 MDT 2022	Tue Mar 29 15:15:53 MDT 2022	1	finished	Bat	tch job running function
	dpietrus	Tue Mar 29 15:16:54 MDT 2022	Tue Mar 29 15:17:27 MDT 2022	1	finished	Bat	tch job running function
;	dpietrus	Tue Mar 29 15:19:56 MDT 2022	Tue Mar 29 15:20:44 MDT 2022	20	finished		tch job running function
	dpietrus	Tue Mar 29 15:42:39 MDT 2022	Tue Mar 29 15:43:40 MDT 2022	11	finished Can	Jac	tch job running function
i i	dpietrus	Tue Mar 29 15:46:28 MDT 2022	Tue Mar 29 15:46:50 MDT 2022	1	finished Del	ete Bat	tch job running script
	dpietrus	Tue Mar 29 15:49:41 MDT 2022	Tue Mar 29 15:50:28 MDT 2022	1	finished Sho	ow Details Bat	tch job running script
	dpietrus	Tue Mar 29 15:54:06 MDT 2022	Tue Mar 29 15:54:36 MDT 2022	4	finished Sho	w Errors Bat	tch job running function
1	dpietrus	Tue Mar 29 15:57:41 MDT 2022	Tue Mar 29 15:58:15 MDT 2022	11	finished Sho	w Warnings	tch job running function
						ow Diary	

Keep cluster files minimal: delete jobs


• As a good practice, delete jobs you no longer need

>> % Finished with the job, delete it to cleanup list of jobs
>> j.delete
>>

Noninteractively: in a SLURM job script sbatch

#!/bin/sh

#SBATCH -n 1
#SBATCH --cpus-per-task=8
#SBATCH --mem-per-cpu=4gb
#SBATCH --time=00:10:00
#SBATCH -A matlabworkshop2022
#SBATCH --reservation=MATLAB_WS

Add MATLAB to system path
module load matlab/R2021b

Run code
matlab -batch calc_pi

1 instance of MATLAB
8 cores per instance
4 GB RAM per core
10 minutes
Account Name
Just for this Workshop

#!/bin/sh

#SBATCH -n 1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4gb
#SBATCH --time=00:20:00
#SBATCH -A matlabworkshop2022
#SBATCH --reservation=MATLAB_WS

Add MATLAB to system path
module load matlab/R2021b

Run code
matlab -batch calc_pi_multi_node

- # 1 instance of MATLAB
- # 1 core per instance
- # 4 GB RAM per core
- # 20 minutes
- # Account Name
- # Just for this Workshop

matlab-single-node.slurm

matlab-multi-node.slurm

Job submission

[dpietrus@tlog2 matlab-workshop-files]\$ sbatch matlab-single-node.slurm Submitted batch job 2338906 [dpietrus@tlog2 matlab-workshop-files]\$ [dpietrus@tlog2 matlab-workshop-files]\$ sbatch matlab-multi-node.slurm Submitted batch job 2338907 [dpietrus@tlog2 matlab-workshop-files]\$

Local pool of workers

```
[dpietrus@tlog2 matlab-workshop-files]$ head slurm-2338906.out
        Trial License -- for use to evaluate programs for possible
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).
Worker 1:
  Subinterval: [0 , 0.125]
Worker 2:
  Subinterval: [0.125, 0.25]
Worker 3:
[dpietrus@tlog2 matlab-workshop-files]$ tail slurm-2338906.out
  Subinterval: [0.5, 0.625] Integral: 0.379807
Worker 6:
  Subinterval: [0.625, 0.75] Integral: 0.339607
Worker 7:
  Subinterval: [0.75, 0.875] Integral: 0.301316
Worker 8:
  Subinterval: [0.875, 1 ] Integral: 0.266273
pi
            <u>: 3.141592653589793116</u>
Approximation: 3.141592653589792672
Error
             : 4.44089e-16
[dpietrus@tlog2 matlab-workshop-files]$
```

```
c = parcluster('local');
```

```
% Query for available cores (assume either Slurm or PBS)
sz = str2num([geten('SLURM_CPUS_PER_TASK'));
if isempty(sz), sz = maxNumCompThreads; end
```

if isempty(gcp('nocreate')), c.parpool((sz)) end

#!/bin/sh

#SBATCH -n 1 #SBATCH --cpus-per-task=8 #SBATCH --mem-per-cpu=4gb #SBATCH --time=00:10:00 #SBATCH -A matlabworkshop2022 #SBATCH --reservation=MATLAB WS

Add MATLAB to system path module load matlab/R2021b

Run code matlab -batch calc_pi # 1 instance of MATLAB

- # 8 cores per instance
- # 4 GB RAM per core
- # 10 minutes
- # Account Name
- # Just for this Workshop

Multi-node pool of workers

[dpietrus@tlog2 matlab-workshop-files]\$ head slurm-2338907.out

Trial License -- for use to evaluate programs for possible purchase as an end-user only.

Starting parallel pool (parpool) using the 'teton R2021b' profile ...

additionalSubmitArgs =

'--ntasks=20 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022 -t 1:00:00 --mem-per-cpu=5G'

```
Connected to the parallel pool (number of workers: 20).
[dpietrus@tlog2 matlab-workshop-files]$ tail slurm-2338907.out
Subinterval: [0.8 , 0.85] Integral: 0.119012
Worker 18:
Subinterval: [0.85, 0.9 ] Integral: 0.113284
Worker 19:
Subinterval: [0.9 , 0.95] Integral: 0.107791
Worker 20:
Subinterval: [0.95, 1 ] Integral: 0.102542
pi : 3.141592653589793116
Approximation: 3.141592653589793116
Error : 0
[dpietrus@tlog2 matlab-workshop-files]$
```


Debugging and Troubleshooting

Scheduler ID

```
>> j = c.batch(@pwd,1,{});
```

```
additionalSubmitArgs =
```

```
'--ntasks=1 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022
>> % Job ID vs Scheduler ID
>> j.ID
ans =
70
>> j.getTaskSchedulerIDs{1}
ans =
```


Example: Errored submissions (1)

>> % Undefined function
>> j = c.batch(@invalid_fcn,0,{});
Warning: Unable to calculate the dependencies of the files:
 invalid_fcn

because:

File, function or class "invalid_fcn" may not exist. Neither WHICH nor EXIST could find an exact, case-sensitive match. Please check the spelling of the name, and that any required directories are on the MATLAB path.

> In parallel.internal.apishared/AttachedFiles/calculateAttachedFiles (line 315)

In parallel.internal.cluster.AbstractBatchHelper>iWrapCalculateAttachedFiles (line 819)

In parallel.internal.cluster.AbstractBatchHelper>@(f)iWrapCalculateAttachedFiles(f,function

In parallel.internal.cluster.AbstractBatchHelper>iCalculateTaskDependencies (line 790)

In parallel.internal.cluster/AbstractBatchHelper/getCreateTaskInputs (line 646)

In parallel.internal.cluster/BatchHelper2/doBatch (line 37)

In parallel.Cluster/batch (line 155)

additionalSubmitArgs =

'--ntasks=1 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022 -t 1:00:00 --me

Example: Errored submissions (2)

```
>> % Undefined function
>> j.State
```

ans =

'finished'

```
>> j.fetchOutputs{:}
Error using parallel.Job/fetchOutputs (line 1300)
An error occurred during execution of Task with ID 1.
```

Caused by: Unrecognized function or variable 'invalid_fcn'.

>>

Fetching outputs, even with no outputs returned, to get the error message

Logfile: Single core job

```
>> j = c.batch(@pwd,1,{});
```

```
additionalSubmitArgs =
```

```
'--ntasks=1 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022
```

```
>> % Retreive log file for single core job
>> c.getDebugLog(j.Tasks(1))
LOG FILE OUTPUT:
Executing: /pfs/tc1/apps/el7-x86_64/u/opt/matlab/R2021b/bin/worker
Exiting with code: 0
```

```
>>
```


Logfile: Multi-core job

```
>> j = c.batch(@pwd,1,{},'Pool',2);
```

```
additionalSubmitArgs =
```

```
'--ntasks=3 --cpus-per-task=1 --ntasks-per-core=1 -A matlabworkshop2022
```

```
>> % Retreive log file for multi-core job
>> c.getDebugLog(j)
LOG FILE OUTPUT:
The scheduler has allocated the following nodes to this job:
m003
"/pfs/tc1/apps/el7-x86 64/u/opt/matlab/R2021b/bin/mw_mpiexec" -l -n 3 "/pfs/
[0] Sending a stop signal to all the labs...
[0] Parallel pool is shutting down.[0]
Exiting with code: 0
```