The Teton HPC cluster is the successor of Mount Moran. Teton contains several new compute nodes. All Mount Moran nodes have been reprovisioned within the Teton HPC Cluster. The system is available by SSH using hostname teton.arcc.uwyo.edu or teton.uwyo.edu. We ask that everybody who uses ARCC resources cite the resources accordingly. See Citing Teton. Newcomers to research computing should also consider reading the Research Computing Quick Reference.
...
Contents
Table of Contents |
---|
...
Tip |
---|
Tip |
---|
...
Overview
Teton is an Intel x86_64 cluster connected via a Mellanox FDR/EDR InfiniBand and has a 1.3 PB IBM Spectrum Scale global parallel filesystem available to all nodes. The system requires UWYO two-factor authentication (2FA) for login via SSH. The default shell is BASH with Lmod modules system is leveraged for dynamic user environments to help switch software stacks rapidly and easily. The Slurm workload manager is employed to schedule jobs, provide submission limits, and implement fair share as well as provide the Quality of Service (QoS) levels for research groups who have invested in the cluster.
Teton has a Digital Object Identifier (DOI) (https://doi.org/10.15786/M2FY47) and we request that all use of Teton appropriately acknowledges the system. Please see Citing Teton for more information.
Available Nodes
See Partitions for information regarding Slurm Partitions on Teton.
...
File spaces within the Teton cluster filesystem may be subject to a purge policy. The policy has not yet been defined. However, ARCC reserves the right to purge data in this area after 30 to 90 days of no access or from creation time. Before performing an actual purge event, the owner of the file(s) will be notified by email several times for files that are subject to being purged.
Storage Increases on Teton
Project PIs can purchase additional scratch and/or project space at a cost of $100 / TB / year.
Additionally, PIs can request allocation increases at no cost for scratch and/or project space by submitting proposals that must be renewed when substantial cluster or storage changes occur:
the scientific gain and insights that will be or have been obtained by using the system,
how data is organized and accessed in efforts to maximize performance and usage.
Projects are limited to 1 no-cost increase.
To request more information, please contact ARCC.
...
Teton has login nodes for users to access the cluster. Login nodes are available publicly using the hostname teton.arcc.uwyo.edu or teton.uwyo.edu. SSH can be done natively on MacOS or Linux based operating systems using the terminal and the ssh command. Although X11 forwarding is supported, and if you need graphical support, we recommend using FastX if at all possible. Additionally, you may want to configure your OpenSSH client to support connection multiplexing if you require multiple terminal sessions. For those instances where you have unreliable network connectivity, you may want to use either tmux or screen once you login to keep sessions alive during disconnects. This will allow you to later reconnect to these sessions.
...
Teton has several shells available for use. The default is bash]. To change your default shell, please submit the request through standard ARCC request methods.hard
...
The following tables list each node that has GPUs and the type of GPU installed.
Table #1
Expand | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
The following two GPU nodes are reserved for AI use.
Table #2
Node | Partition | GPU Type | Number of Devices | GPU Memory Size (GB) | Compute Capability | GRES Flag | Teton Partition | Notes |
---|---|---|---|---|---|---|---|---|
mdgx01 | dgx | Tesla V100 | 8 | 16 | 7.0 | gpu:V100-16g:{1-8} | No | |
tdgx01 | dgx | Tesla V100 | 8 | 32 | 7.0 | gpu:V100-32g:{1-8} | No |
...
For additional information about CUDA programming visit Nivida's CUDA C Programming Guide: [2]
Access and Running Jobs
There are three different types of GPU nodes in the Teton cluster and they are requested in somewhat different ways.
...
Node sharing can be accessed by requesting less than the full number of GPUs, CPUs or memory. Note that node sharing can also be done on the basis of the number of CPU's and/or memory, or all three. By default, each job gets 3.5 GB of memory per core requested (the lowest common denominator among our cluster nodes), therefore to request a different amount than the default amount of memory, you must use the "-mem" flag. To request exclusive use of the node, use "-mem=0".
Example #1
An example script that would request two Teton nodes with 2xK20m GPU's, including all cores and all memory, running one GPU per MPI task, would look like this:
Code Block |
---|
#SBATCH --nodes=2 #SBATCH --mem=0 #SBATCH --partition=teton #SBATCH --account=<account> #SBATCH --gres=gpu:k20m:2 #SBATCH --time=1:00:00 ... Other job prep srun myprogram.exe |
Example #2
To request all 8 K80 GPUs on a Teton node, again using one GPU per MPI task, we would do:
Code Block |
---|
#SBATCH --nodes=1 #SBATCH --mem=0 #SBATCH --partition=teton #SBATCH --account=<account> #SBATCH --gres=gpu:k80:8 #SBATCH --time=1:00:00 ... Other job prep srun myprogram.exe |
Example #3
Another example, using the job script below will get four GPUs, four CPU cores, and 8GB of memory. The remaining GPUs, CPUs, and memory will then be accessible to other jobs.
Code Block |
---|
#SBATCH --ntasks=4 #SBATCH --nodes=1 #SBATCH --mem=8 #SBATCH --partition=teton #SBATCH --account=<account> #SBATCH --gres=gpu:k80:4 #SBATCH --time=00:30:00 ... Other job prep srun myprogram.exe |
Example #4
To run a parallel interactive job with MPI, do not use the usual "srun" command, as this does not work properly with the "gres" request. Instead, use the "salloc" command, e.g.
...
Code Block |
---|
srun -n 1 -N 1 -t 1:00:00 -A <account> -p teton-gpu --gres=gpu:p100:1 --pty /bin/bash -l |
GPU Programming Environment
On Teton Nvidia CUDA, PGI CUDA Fortran and the OpenACC compilers are installed. The default CUDA is 9.2.88, which at the time of writing is the most recent. You can access by simply loading the CUDA module, "module load cuda". PGI compilers come with their own CUDA which is quite recent, and can be set access by loading the PGI module, using "module load pgi".
Any login node should work to compile your CUDA code as the CUDA tools are avaiable available from the login nodes. PGI compilers come with their own CUDA so compiling anywhere from where you can load the PGI module should work.
...
Code Block |
---|
userX@m025:~# nvidia-smi -L GPU 0: Tesla K20m (UUID: GPU-2e23ddef-1d96-7894-102a-0458da3faaa4) GPU 1: Tesla K20m (UUID: GPU-458a86ec-09cd-64d1-475a-d36dc0a73b4f) |
Debugging
Nvidia's CUDA distribution includes a terminal debugger named cuda-gdb. Its operation is similar to the GNU gdbdebugger. For details, see the cuda-gdb documentation.
...
The Allinea DDT debugger that we currently license also supports CUDA and OpenACC debugging. Due to its user-friendly graphical interface, we recommend them for GPU debugging. For information on how to use DDT or TotalView, see our debugging page.
Profiling
Profiling can be very useful in finding GPU code performance problems, for example, inefficient GPU utilization, use of shared memory, etc. Nvidia CUDA provides both command line (nprof) and visual profiler (nvvp). More information is in the CUDA profilers' documentation.
...